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special quadrature rules, but they are also sometimes blessings in disguise, since they

can spoil a kernel's smoothing and make problems well-conditioned.

In §518.4-18.7 we face up to the issues of inverse probleE3.4 is an
introduction to this large subject.

We should note here that wavelet transforms, already discus$d@®.ih0, are

applicable not only to data compression and signal processing, but can also be us
to transform some classes of integral equations into sparse linear problems that allo

fast solution. You may wish to revie$d3.10 as part of reading this chapter.
Some subjects, such agegro-differential equations, we must simply declare

to be beyond our scope. For a review of methods for integro-differential equations

see Brunneg].

It should go without saying that this one short chapter can only barely touch on

a few of the most basic methods involved in this complicated subject.
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18.1 Fredholm Equations of the Second Kind
We desire a numerical solution f¢i(¢) in the equation

b
f(t) = /\/ K(t,s)f(s)ds + g(t) (18.1.7

The method we describe, a very basic one, is calledNgfsaom method. It requires
the choice of some approximatgadrature rule;

b N
/ y(s)ds = ijy(sj) (18.1.2
a =1

Here the sef{w;} are the weights of the quadrature rule, while fiigoints{s ;}
are the abscissas.
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What quadrature rule should we use? It is certainly possible to solve integral
equations with low-order quadrature rules like the repeated trapezoidal or Simpson’s

o
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18.1 Fredholm Equations of the Second Kind 783

rules. We will see, however, that the solution method invol¢s/ 3) operations,

and so the most efficient methods tend to use high-order quadrature rules to keep
N as small as possible. For smooth, nonsingular problems, nothing beats Gaussian

quadrature (e.g., Gauss-Legendre quadrafi#&). (For non-smooth or singular

kernels, see18.3.)

Delves and Mohameid] investigated methods more complicated than the
Nystrom method. For straightforward Fredholm equations of the second kind, the

concluded ‘. . the clear winner of this contest has been the Nystrom routingith

the N-point Gauss-Legendre rule. This routine is extremely simpleSuch results

are enough to make a numerical analyst weep.”
If we apply the quadrature rule (18.1.2) to equation (18.1.1), we get

_AE:MJ (t,s;)f(s5) + g(t) (18.1.3

Evaluate equation (18.1.3) at the quadrature points:
= AZwJ (ti 7). (s5) + g(t:) (18.1.4

Let f; be the vectorf (¢;), g; the vectorg(t;), K;; the matrixX (¢;, s,), and define
Then in matrix notation equation (18.1.4) becomes

(1-XK)-f=g (18.1.6

This is a set ofN linear algebraic equations iV unknowns that can be solved
by standard triangular decomposition techniqu@s3) — that is where th& (N 3)
operations count comes in. The solution is usually well-conditioned, unléss

very close to an eigenvalue.

Having obtained the solution at the quadrature pojnt$, how do you get the
solution at some other poi? You donot simply use polynomial interpolation.
This destroys all the accuracy you have worked so hard to achieve. Nystrom’s ke
observation was that you should use equation (18.1.3) as an interpolatory formul

maintaining the accuracy of the solution.

We here give two subroutines for use with linear Fredholm equations of the
second kind. The routinered2 sets up equation (18.1.6) and then solves Ty
decomposition with calls to the routin@sdcmp andlubksb. The Gauss-Legendre

Y
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guadrature is implemented by first getting the weights and abscissas with a call to

gauleg. Routinefred?2 requires that you provide an external function that returns
g(t) and another that returngl;;. It then returns the solutiofi at the quadrature

points. It also returns the quadrature points and weights. These are used by the

second routingredin to carry out the Nystrom interpolation of equation (18.1.3)

and return the value of at any point in the interval, b].
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784 Chapter 18.  Integral Equations and Inverse Theory

SUBROUTINE fred2(m,a,b,t,f,w,g,ak)

INTEGER n,NMAX

REAL a,b,f(n),t(n),w(n),g,ak

EXTERNAL ak,g

PARAMETER (NMAX=200)

USES ak, g, gaul eg, | ubksb, | udcnp
Solves a linear Fredholm equation of the second kind. On input, a and b are the limits of
integration, and n is the number of points to use in the Gaussian quadrature. g and ak
are user-supplied external functions that respectively return g(¢t) and AK (¢, s). The routine
returns arrays t (1:n) and £(1:n) containing the abscissas t; of the Gaussian quadrature
and the solution f at these abscissas. Also returned is the array w(1:n) of Gaussian weights
for use with the Nystrom interpolation routine fredin.

INTEGER 1i,j,indx (NMAX)

REAL d, omk (NMAX,NMAX)

if(n.gt.NMAX) pause ’increase NMAX in fred2’

call gauleg(a,b,t,w,n) Replace gauleg with another routine if not using
do12 i=1,n Gauss-Legendre quadrature.
do11 j=1,n Form 1 — AK.
if(i.eq.j)then
omk(i,j)=1.
else
omk(i,j)=0.
endif
omk (i, j)=omk(i,j)-ak(t(i),t(3))*w(j)
enddo 11
f(i)=g(t(i))
enddo 12
call ludcmp(omk,n,NMAX,indx,d) Solve linear equations.
call lubksb(omk,n,NMAX,indx,f)
return
END

FUNCTION fredin(x,n,a,b,t,f,w,g,ak)

INTEGER n

REAL fredin,a,b,x,f(n),t(n),w(n),g,ak

EXTERNAL ak,g

USES ak, g
Given arrays t(1:n) and w(1:n) containing the abscissas and weights of the Gaussian
quadrature, and given the solution array £(1:n) from fred2, this function returns the
value of f at x using the Nystrom interpolation formula. On input, a and b are the limits
of integration, and n is the number of points used in the Gaussian quadrature. g and ak
are user-supplied external functions that respectively return g(t) and AK (¢, s).

INTEGER i

REAL sum

sum=0.

do11 i=1,n
sum=sum-+ak (x,t (1)) *w(i)*f (i)

enddo 11

fredin=g(x)+sum

return

END
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One disadvantage of a method based on Gaussian quadrature is that there is
simple way to obtain an estimate of the error in the result. The best practical method
is to increaseV by 50%, say, and treat the difference between the two estimates as a
conservative estimate of the error in the result obtained with the larger vahie of
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18.1 Fredholm Equations of the Second Kind 785

Turn now to solutions of the homogeneous equation. If wekset1/0 and
g = 0, then equation (18.1.6) becomes a standard eigenvalue equation

K.-f=of (18.1.7

which we can solve with any convenient matrix eigenvalue routine (see Chapter
11). Note that if our original problem had a symmetric kernel, then the mitrix

is symmetric. However, since the weights are not equal for most quadrature
rules, the matrixk (equation 18.1.5) is not symmetric. The matrix eigenvalue
problem is much easier for symmetric matrices, and so we should restore th
symmetry if possible. Provided the weights are positive (which they are for Gaussia
quadrature), we can define the diagonal marix diagw ;) and its square root,
D'/? = diag(,/w;). Then equation (18.1.7) becomes

ny

LfRJ:)'Ju‘MMM//:d

-T ||eo?o

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apows si ‘1eindwod 1aaias Aue o} (suo siyy Buipnjoul) saji a|qepeal

-auiyoew Jjo BuiAdoo Aue o

K-D-f=of
Multiplying by D'/2, we get

(D1/2 K- D1/2) h=oh (18.1.9

whereh = D'/2 . f. Equation (18.1.8) is now in the form of a symmetric eigenvalue
problem.

Solution of equations (18.1.7) or (18.1.8) will in general giVeeigenvalues,
where N is the number of quadrature points used. For square-integrable kernels=
these will provide good approximations to the lowdseigenvalues of the integral
equation. Kernels dfinite rank (also calleddegenerate or separable kernels) have
only a finite number of nonzero eigenvalues (possibly none). You can diagnose
this situation by a cluster of eigenvalueghat are zero to machine precision. The
number of nonzero eigenvalues will stay constant as you incrdase improve
their accuracy. Some care is required here: A nondegenerate kernel can have
infinite number of eigenvalues that have an accumulation point at 0. You
distinguish the two cases by the behavior of the solution as you inciéaskyou
suspect a degenerate kernel, you will usually be able to solve the problem by analyti
techniques described in all the textbooks.
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786 Chapter 18.  Integral Equations and Inverse Theory

18.2 Volterra Equations

Let us now turn to Volterra equations, of which our prototype is the Volterra
equation of the second kind,

:dny

/ K(t,s)f(s)ds + g(t) (18.2.3)

Most algorithms for Volterra equations march out from a, building up the solution
as they go. In this sense they resemble not only forward substitution (as discusse
in §18.0), but also initial-value problems for ordinary differential equations. In fact,
many algorithms for ODEs have counterparts for Volterra equations.

The simplest way to proceed is to solve the equation on a mesh with uniform:
spacing:

T I8 10 WOTIU MMM/

ti=a+1th, 1=0,1,...,N, h=

(18.2.2
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To do so, we must choose a quadrature rule. For a uniform mesh, the simples
scheme is the trapezoidal rule, equation (4.1.11):

t i1
/ K(ti,s)f(s)ds =h | 5Kiofo+ ZKijfj + 2 Kiifi (18.2.3

j=1
Thus the trapezoidal method for equation (18.2.1) is:
Jo =90

i-1 (18.2.4
(1—3hKy)fi=h %Kiofo-I—ZKijfj + 9i, i=1,...,N
Jj=1

(For a \olterra equation of the first kind, the leadihgn the left would be absent,
andg would have opposite sign, with corresponding straightforward changes in the
rest of the discussion.)

Equation (18.2.4) is an explicit prescription that gives the solutio® iV 2)
operations. Unlike Fredholm equations, it is not necessary to solve a system of line
equations. Volterra equations thus usually involve less work than the correspondings
Fredholm equations which, as we have seen, do involve the inversion of, sometime
large, linear systems.

The efficiency of solving Volterra equations is somewhat counterbalanced by » .
the fact thatsystems of these equations occur more frequently in practice. If we
interpret equation (18.2.1) asvactor equation for the vector af: functionsf(¢),
then the kerneK (¢, s) is anm x m matrix. Equation (18.2.4) must now also be
understood as a vector equation. For egcive have to solve ther x m set of
linear algebraic equations by Gaussian elimination.

The routinevoltra below implements this algorithm. You must supply an
external function that returns theh function of the vectog(t) at the point, and
another that returns thig, [) element of the matri¥<(t, s) at (¢, s). The routine
voltra then returns the vectqgf(¢) at the regularly spaced points.
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